Untersuchung des Zusammenhangs zwischen dem zirkadianen System und der Entstehung von Lungentumoren zur Personalisierung der Zeitpläne für die Chemo-Immuntherapie

Lungenkrebs ist weltweit eine der häufigsten Ursachen für krebsbedingte Todesfälle, vor allem weil die meisten Patienten zum Zeitpunkt der Diagnose bereits Metastasen gebildet haben. Neben der Notwendigkeit einer früheren Diagnose mangelt es grundsätzlich an wirksamen Therapien für Lungenkrebs.  Infolgedessen hat Lungenkrebs eine schlechte Prognose und eine niedrige Überlebensrate. In diesem gemeinsamen TANDEM-Projekt wollen eine Grundlagenforscherin, ein Chirurg und ein Onkologe die Lungenkrebstherapie erneuern, indem sie sich die körpereigene “zirkadiane” Uhr zunutze machen, um die therapeutische Wirkung zu maximieren.

Das zirkadiane System hat sich in lichtempfindlichen Organismen als intrinsische biologische Uhr mit Oszillationsperioden von nahezu 24 Stunden entwickelt, die mit der geophysikalischen Zeit übereinstimmen. Es ist das molekulare Zeitmesssystem, das in den meisten Körperzellen aktiv ist und unsere physiologischen Aktivitäten steuert. Damit verbunden ist auch eine Zellteilungsuhr, die sowohl das normale Wachstum als auch die Tumorentwicklung steuert. Bei einer bösartigen Transformation, d. h. der Entstehung von Krebszellen aus normalen Zellen, werden beide oben genannten Zellsteuerungssysteme massiv verändert, was zur Tumorbildung führt.

In diesem Projekt wird vorgeschlagen, die Chronotherapie bei Lungenkrebs zu optimieren. Chronotherapie bedeutet, dass der “Behandlungsplan” zeitlich so abgestimmt wird, dass die Einführung von Medikamenten mit den natürlichen zirkadianen Rhythmen des Patienten übereinstimmt. Vorläufige Daten zeigen, dass bei bestimmten Krebsarten die Koordinierung der Verabreichung von Antitumor-Medikamenten zu bestimmten Tageszeiten die Wirksamkeit der Chemotherapie verbessert und die Toxizität verringert. Angeregt durch dieses sich abzeichnende Potenzial wird das TANDEM-Team die Chronobiologie von Lungenkrebs untersuchen, um festzustellen, ob die Koordinierung der Therapie mit dem zirkadianen Zyklus das Ergebnis für Lungenkrebspatienten verbessern kann.

Das Projekt hat zwei Ziele. Erstens soll die Diagnose von Lungenkrebs verfeinert werden, und zweitens sollen personalisierte Zeitpläne für die Verabreichung von Chemo-Immuntherapie entwickelt werden. Dies soll durch die Analyse der Wechselwirkung zwischen der zirkadianen Uhr und dem Fortschreiten des Lungenkrebses erreicht werden, und zweitens durch die Analyse der Reaktion der Patienten auf die zu verschiedenen Tageszeiten verabreichte Therapie. Dies soll eine Optimierung der Lungenkrebstherapie ermöglichen und die personalisierte Versorgung verbessern.

Verwendung von Gewebe des Patienten zur Vorhersage der Wirksamkeit verschiedener Behandlungen, um die beste für jeden Patienten zu finden

Der Einsatz molekularer und genetischer Ansätze zur Personalisierung medizinischer Behandlungen ist auf dem besten Weg, die Krebstherapie zu revolutionieren, denn die personalisierte Medizin kann massgeschneiderte Therapien entwickeln und den Einsatz unwirksamer und oft schwächender Moleküle vermeiden. Derzeit basiert die Krebsbehandlung auf dem Tumorstadium, dem Mutationsprofil und der klinischen Vorgeschichte, während entscheidende Faktoren wie die Heterogenität des Tumors und seine Mikroumgebung selten berücksichtigt werden. Die letztgenannten Faktoren sind jedoch oft die variabelsten und können das Ansprechen auf die Therapie beeinflussen. Daher besteht ein dringender Bedarf, patientenspezifische Daten in die Entscheidung über die Wahl der Behandlung einzubeziehen.

Ziel dieses Projekts ist die Entwicklung eines automatisierten Kultursystems für von Patienten stammende Tumorexplantate. Diese Tumor-Avatare sind für jeden Patienten einzigartig und bieten eine Plattform, um die Empfindlichkeit jedes Tumors gegenüber verschiedenen Behandlungen zu testen. Diese Informationen könnten genutzt werden, um das klinische Ansprechen vorherzusagen und somit den Hämato-Onkologen bei der Auswahl des wirksamsten Moleküls für jeden Patienten zu unterstützen. In diesem Projekt arbeitet das Team mit Patienten, die an einem Non-Hodgkin-Lymphom erkrankt sind, einer Krebsart, die von reifen Lymphozyten (einer Art von weissen Blutkörperchen) ausgeht.

Das Team hat eine Reihe vielversprechender erster Ergebnisse vorzuweisen. Zunächst hat das Grundlagenforschungsteam eine Methode entwickelt, mit der kleine Fragmente des Tumorgewebes, die dem Patienten entnommen wurden, so kultiviert werden können, dass wichtige Merkmale des Gewebes, einschliesslich der zellulären Zusammensetzung und Architektur, erhalten bleiben. Diese Fragmente, Lymphomoide genannt, können anschliessend verwendet werden, um die Empfindlichkeit gegenüber verschiedenen Therapien zu testen. Ziel ist es, die Lymphomtechnologie als klinisches Instrument zu optimieren, um für jeden Lymphompatienten die am besten geeignete Behandlung zu finden. Das Team wird hochmoderne Bildanalysen räumlicher Merkmale einsetzen, um die Wirkung der Behandlung sowohl auf das Lymphom als auch auf die benachbarten Zellen, die die Mikroumgebung des Tumors bilden, zu verstehen. Diese Technologie kann nicht nur dazu dienen, bestehende Behandlungen besser auf bestimmte Patienten abzustimmen, sondern auch zur Entdeckung neuer Therapien.

Unwirksame Therapien sind mit potenzieller Toxizität verbunden und führen letztlich zur Entstehung von resistenten Krankheiten, die schwieriger zu behandeln sind. Daher wäre die Einführung einer Technologie, die diese ineffizienten Behandlungen in der klinischen Routinepraxis direkt identifizieren könnte, bahnbrechend und könnte die Prognose und Lebensqualität der Patienten erheblich verbessern.

Analyse tertiärer lymphatischer Strukturen als Teil der Umgebung des Hirntumors zur Entwicklung von Immuntherapien gegen Glioblastome

Das Glioblastom (GBM) ist der häufigste und bösartigste primäre Hirntumor bei Erwachsenen. Die aggressive und invasive Natur des Tumors und seine Heterogenität machen ihn oft resistent gegen Standardtherapien, einschliesslich Chemotherapie, Bestrahlung und Operation, was zu einer Überlebensrate von weniger als zwei Jahren führt. Im Rahmen dieser TANDEM-Kooperation hofft das Team, die Ergebnisse der GBM-Behandlungen zu verbessern, indem es das Verständnis der Interaktion zwischen diesem Tumor und der ihn umgebenden zellulären Umgebung erweitert.

Tertiäre lymphatische Strukturen (TLS) sind ektopische (fehlplatzierte) Teile des lymphatischen Systems, die sich in nicht-lymphoiden Geweben entwickeln und sich vor allem an Stellen mit chronischen Entzündungen wie Tumoren bilden. Vergangene Arbeiten haben gezeigt, dass TLS für die Prognose von Krebspatienten von grosser Bedeutung sind, da sie Teil der zellulären Umgebung sind, die den Tumor umgibt, dem TME. Ein wesentlicher Schwerpunkt der Krebsforschung liegt auf den Makrophagen, die in TLS zu finden sind, da diese weissen Blutkörperchen das Tumorwachstum entweder fördern oder behindern können, indem sie dazu beitragen, das Gewebe, das den Krebs umgibt und stützt, umzugestalten.

Die Wissenschaftler zielen darauf ab zu verstehen, wie tertiäre lymphatische Strukturen mit dem TME bei Glioblastom-Patienten interagieren, um schliesslich eine Anti-Tumor-Immunantwort im TLS auszulösen. Insbesondere werden sie das repressive TME charakterisieren, welches die normale Funktion des Immunsystems blockiert, mit dem letztendlichen Ziel, das TLS umzuprogrammieren und mit einer CAR-T-Zell-Behandlung zu kombinieren, einer fortschrittlichen T-Zell-spezifischen Immuntherapie, bei der T-Lymphozyten darauf programmiert werden, Tumorzellen zu erkennen. 

In den nächsten drei Jahren wird das Team modernste Technologien einsetzen, die auf der In-vivo-Darstellung der Genexpression in Zellen in normalen und tumorhaltigen Gewebeschnitten basieren, um den Inhalt des TLS zu identifizieren und zu analysieren. Sie hoffen, die komplizierten Wechselwirkungen der lymphatischen Strukturen mit dem TME zu verstehen, die zur Aufrechterhaltung sowohl des Tumors als auch des TLS beitragen. Dieses neue Wissen könnte neue Wege für die Therapie eröffnen, nämlich die Umprogrammierung des Makrophagenstatus, um den Angriff programmierter T-Zellen (CAR-T) auf den Tumor zu unterstützen. Das äusserst aggressive Verhalten des Glioblastoms und seine hohe Sterblichkeitsrate machen die Suche nach neuen Therapien noch dringender.

Entwicklung eines Endoskops zur besseren Bestimmung der Tumorränder während der Operation

Projekt unterstützt durch den großzügigen Beitrag der LARDECO-Stiftung

Krebserkrankungen des Halses und des Kopfes (Neck and Head Cancers (HNC)) sind tödlich und verstümmelnd. Mit mehr als 150’000 neuen Fällen, die jedes Jahr allein in Europa diagnostiziert werden, und 370’000 Todesfällen weltweit haben diese Krebsarten einen erheblichen Einfluss auf die Bevölkerung. Das Hauptproblem bei HNC besteht darin, dass sie ein charakteristisches infiltratives Wachstum aufweisen, was bedeutet, dass die Krankheit der Eradikation durch lokale Operationen entgehen und sich ausbreiten kann. Das TANDEM-Projekt zielt darauf ab, die Technologie, mit der die HNC-Chirurgie effizienter gestaltet werden kann, zu verbessern.

Bei mehr als 50 % der HNC-Patienten ist die Erstbehandlung eine Operation. Bei diesen Eingriffen ist es wichtig, dass der Operationsrand (die “Grenze” zwischen Tumorgewebe und gesundem Gewebe) negativ für Krebszellen ist. Dazu muss der Krebs so weit entfernt werden, dass selbst auf mikroskopischer Ebene keine Tumorzellen zurückbleiben. Eine verbleibende Erkrankung kann zu einem lokalen Wiederauftreten und zum Tod des Patienten führen.

Die routinemässig angewandten chirurgischen Techniken haben ein begrenztes Auflösungsvermögen, und die Chirurgen können die Ausdehnung des Tumors oft nur schlecht erkennen, was dazu führt, dass kranke Zellen am Rande nicht entdeckt werden. Auch wenn die Operation als erfolgreich angesehen wird, ist sie bei etwa 20 % der Patienten nicht erfolgreich. Infolgedessen müssen sich diese Patienten weiteren Behandlungen wie chemischen und Strahlentherapien unterziehen, die aggressiv sind und die Lebensqualität der Patienten stark beeinträchtigen.

Diese Zusammenarbeit zwischen Klinikern und Ingenieuren zielt darauf ab, kürzlich entwickelte ultradünne Endoskope zu verwenden, die aufgrund ihrer geringen Grösse (dünn wie ein Haar!) minimal invasiv sind und dennoch hochauflösende Bilder liefern, die eine präzisere Visualisierung von Tumorzellen in situ ermöglichen werden. Wichtig ist, dass diese Technologie während der Operation in Echtzeit eingesetzt wird, damit der Chirurg viel genauer vorhersagen kann, wo das Tumorgewebe endet und das gesunde Gewebe beginnt. Letztlich wird dies die Zuverlässigkeit der Diagnostik und die Erfolgsrate der HNC-Operation für diese Krebspatienten verbessern.

Erweiterung des Wissens über das Potenzial von Krebsimpfstoffen

Lungenkrebs ist bis heute die Hauptursache für krebsbedingte Todesfälle weltweit. Es besteht ein dringender Bedarf an der Entwicklung wirksamerer Therapien, da Lungentumore häufig sowohl gegen konventionelle als auch gegen zielgerichtete Therapien, wie z. B. Immuntherapien, resistent werden. Im Rahmen dieser Zusammenarbeit soll eine vielversprechende Krebstherapie, nämlich die Impfung mit dendritischen Zellen (DZ), weiterentwickelt werden.

DZs spielen eine grundlegende Rolle bei der Steuerung der Funktionen unseres Immunsystems. Auf ihrer Oberfläche präsentieren sie Antigene, die von anderen Akteuren der Immunreaktion erkannt werden. Ihre biologische Rolle wird seit langem genutzt, um DZ-Impfstoffe für Krebspatienten zu entwickeln. Das Ziel eines DZ-Impfstoffs ist es, das eigene Immunsystem des Patienten dazu zu bringen, die Krebszellen zu erkennen und zu eliminieren. Genauer gesagt, werden unreife DZs aus einem Krebspatienten isoliert und dann mit tumorassoziierten Antigenen in Kontakt gebracht. Nachdem die Zellen ihre volle Reife erreicht haben, werden sie dem Patienten wieder zugeführt, um eine Anti-Tumor-Reaktion auszulösen. Dieser traditionelle Ansatz hat jedoch einige Einschränkungen und hat zu gemischten klinischen Ergebnissen geführt.

Dieses TANDEM-Projekt zielt darauf ab, die Entwicklung von DZ-Vakzinen für die Lungenkrebstherapie voranzutreiben. Es nutzt einen neuartigen DZ-Typ, der im Labor so verändert wird, dass er dem Immunsystem Tumorantigene besser präsentieren kann. Diese Arbeit wird das therapeutische Potenzial von DZ-Vakzinen verbessern und hoffentlich eine neue Behandlungsstrategie für Lungenkrebspatienten ermöglichen.

Der Einsatz neuer Visualisierungstechnologien wird das Verständnis der CAR-T-Zelltherapie fördern

Das Immunsystem spielt eine entscheidende Rolle bei der Hemmung des Tumorwachstums. Die adoptive Zelltherapie ist eine Art der Immuntherapie, bei der die Zellen des eigenen Immunsystems des Patienten entnommen, separat umprogrammiert und dem Körper wieder zugeführt werden, um Tumore ganz gezielt zu bekämpfen.

Genauer gesagt, eine adoptive Zelltherapie, die chimäre Antigenrezeptor-T-Zellen (CAR-T) verwendet hat sich für Menschen mit ausgewählten hämatologischen Malignomen (Krebsarten, die im blutbildenden Gewebe beginnen), die zu Rückfällen neigen oder refraktär sind, als wegweisend erwiesen. CAR-T-Therapien werden zunehmend auch zur Behandlung solider Tumore eingesetzt. Leider sind mit der CAR-T-Zelltherapie erhebliche Toxizitäten verbunden, zumal die präklinischen Instrumente zur Bewertung der CAR-Effizienz und -Sicherheit ungenau, zeitaufwändig und teuer sein können.

Das Ziel dieses TANDEM-Projekts ist es, die Präzision und Sicherheit von gentechnisch veränderten T-Zellen zu erhöhen, indem neue Mikroskopie-Technologien eingesetzt werden, um die Interaktion zwischen der CAR-T-Zelle und der Tumorzelle zu sezieren und zu untersuchen.  Diese Technologien sollen einfach zu implementieren sein, damit sie routinemäßig im klinischen Umfeld eingesetzt werden können. Sie werden wiederum Aufschluss darüber geben, ob die Therapie wirksam ist oder zu Toxizität führt. Im Erfolgsfall wird dieses neue bildgebende Verfahren sowohl die Prognose als auch die Lebensqualität der Patienten während der CAR-T-Behandlung von hämatologischen Malignomen verbessern.

Das Voranschreiten der Krankheit bei Lungenkrebs verstehen

Das Adenokarzinom der Lunge macht 40 % aller Lungenkrebsfälle aus und ist damit einer der häufigsten Lungenkrebsfälle. In früheren Studien wurde die Histopathologie (die Untersuchung von krankheitsbedingten Gewebeveränderungen) eingesetzt, um krankes Lungengewebe auf mikroskopischer Ebene zu diagnostizieren und zu untersuchen. Mit diesem klassischen Ansatz wurden Veränderungen in der Zellmorphologie und den Wachstumsmustern identifiziert, die das Fortschreiten der Krankheit begleiten. Das übergeordnete Ziel der aktuellen Zusammenarbeit besteht darin, mit Hilfe neuer Techniken genauer vorherzusagen, wie der Krebs fortschreiten wird und ob er auf eine Behandlung anspricht oder nicht. 

Das Fortschreiten der Krankheit wird durch die Plastizität der Zellidentität und eine gleichzeitige Umgestaltung der Tumorumgebung vorangetrieben, so dass die Reprogrammierung aufrechterhalten wird. Auf der Grundlage der histopathologischen Analyse gibt es vier wiederkehrende Muster der Tumorprogression, die sowohl die Aggressivität des Tumors als auch die Überlebensprognose der Patienten widerspiegeln. Die Meilensteine sind leicht zu identifizieren und liefern viele Informationen über das Fortschreiten der Krankheit und die Heterogenität des Tumors, sowohl innerhalb eines Patienten als auch zwischen mehreren Patienten:

Während es klinisch relevant ist, die Stadien der Tumorprogression anhand der Histopathologie zu identifizieren, sind auch die molekularen Triebkräfte für die Übergänge von einem Stadium zum nächsten entscheidend. Zu diesem Zweck hat das Team die Übergänge des Krebses von lepidischen zu soliden Tumoren auf molekularer Ebene charakterisiert, indem es eine Kombination von Techniken zur Einzelzellanalyse von Krebszellen und deren Interaktion mit der Mikroumgebung des Tumors eingesetzt hat.

Das Team verfolgt die folgenden Ziele: Erstens sollen molekulare Merkmale der Übergänge von lepidischen zu soliden Tumoren bei verschiedenen Patienten erkannt werden (siehe Abbildung). Zweitens werden sie unser Verständnis dafür vertiefen, wie die Tumorprogression auf der Grundlage der Interaktion von Krebszellen mit der Umgebung der Tumorzellen vorhergesagt werden kann. Das übergeordnete Ziel des Projekts ist es, neue Erkenntnisse über die Rolle der Plastizität von Krebszellen beim Fortschreiten der Krankheit zu gewinnen und zu untersuchen, ob sich damit das Fortschreiten der Krankheit bei einzelnen Patienten vorhersagen lässt. Letztendlich werden die Ergebnisse den Weg für neue Praktiken in der klinischen Diagnostik sowie für neue Ansätze in der Lungenkrebstherapie ebnen.

Entwicklung von KI-Systemen zur Unterstützung bei der Stadieneinteilung und Behandlung von Blasenkrebspatienten

Blasenkrebs (BK) wird in der Regel entweder als oberflächlich oder invasiv eingestuft. Wie bei allen Krebsarten muss der Tumor eingestuft werden, um eine korrekte Prognose zu erstellen und eine geeignete Behandlungsmethode zu wählen. Derzeit hängt die Einstufung von Blasentumoren davon ab, wie tief der Tumor in die Blasenwand eingedrungen ist. Jüngste Untersuchungen haben jedoch gezeigt, dass dies möglicherweise nicht die biologisch relevantesten Merkmale der verschiedenen Formen der Krankheit widerspiegelt. Ziel dieser Zusammenarbeit ist es, das biologische Verhalten von Blasenkrebs auf molekularer und zellulärer Ebene besser zu verstehen, um den Entscheidungsprozess für eine effektive Behandlung zu optimieren. Dieser Entscheidungsprozess ist zeitkritisch, da die Behandlung spätestens zwei Wochen nach der Biopsie beginnen muss.

Das Staging-Verfahren selbst muss unbedingt optimiert werden, da die Genauigkeit an diesem Punkt einen erheblichen Einfluss auf die Wahl der Therapie und die Lebensqualität des Patienten hat. Sowohl eine Über- als auch eine Unterbehandlung von Krebserkrankungen kann ernsthafte Probleme hervorrufen.

Das Hauptziel des TANDEM-Projekts ist die Erforschung der biologischen Natur vom BK durch eine Reihe fortschrittlicher molekularer Hochdurchsatztechniken (Genomik, Transkriptomik, Epigenetik) in Kombination mit der Überwachung der funktionellen Reaktionen auf verschiedene Therapien. Auf dieser Grundlage wird ein Atlas von Tumorzelltypen und Empfindlichkeiten erstellt, der es den Forschern ermöglicht, einen KI-Rahmen zu entwickeln, der die Entscheidungen bei der Behandlung von BK-Patienten besser unterstützen soll. Die Mitarbeiter kombinieren verschiedene Analysemethoden, um sowohl den Tumor als auch das umliegende Gewebe (Tumormikroumgebung) zu beleuchten und die Reaktion des BK auf chemische Hemmstoffe in vitro zu untersuchen. Ziel ist es, eine genauere Plattform für die Diagnose und Einstufung von BK zu schaffen, damit die Ärzte die Patienten mit der wirksamsten Behandlung versorgen können.

Entwicklung einer neuen Therapie für Patienten mit resistentem Darmkrebs

Kolorektales Karzinom (KK) ist die zweithäufigste Krebserkrankung und weltweit für die krebsbedingten Todesfälle bei Männern und Frauen verantwortlich. Obwohl sich die therapeutischen Möglichkeiten verbessert haben, darunter die vielversprechende Einführung von Immuntherapien, profitiert nur ein Bruchteil der Patienten von den derzeitigen Behandlungen oder spricht sogar darauf an. So kommt die Checkpoint-Inhibitor-Therapie bisher nur 5 % der KK-Patienten zugute. Diese Kollaboration zielt darauf ab, dringend benötigte neue Therapieoptionen zu entwickeln, insbesondere solche, die an den einzelnen Patienten angepasst sind, um eine höhere Wirksamkeit und Sicherheit zu gewährleisten.  Ihr Ziel ist eine Verbesserung der Lebensqualität und der Prognose für KK-Patienten.

Es hat sich gezeigt, dass Patienten, die an KK erkrankt sind, eine veränderte Zusammensetzung der Darmmikrobiota aufweisen, die zur Krebsentstehung, zur Therapieresistenz und zur erhöhten Toxizität der derzeit verwendeten Krebsbehandlungen beitragen kann. Vielversprechende Daten zeigen nun, dass bestimmte Bakterien in der Lage sind, die antitumorale Immunantwort zu modulieren und daher als potenzielle Therapeutika oder Adjuvantien für neue Therapien dienen könnten. Weitere neue Studien haben einen Zusammenhang zwischen einem höheren Gehalt an intratumoralen Eosinophilen (einer Art von weißen Blutkörperchen mit spezialisierter Immunfunktion) und einer günstigen Prognose hergestellt. Die Eosinophilenspiegel korrelieren mit einer verbesserten Überlebensrate von Darmkrebs-Patienten. 

Das strategische Ziel dieses Projekts ist es, das Mikrobiom des Patienten und seine Interaktion mit den Eosinophilen besser zu verstehen, um ihre potenzielle Rolle als molekulare Biomarker zu erforschen, die den Krankheitsverlauf und das Ansprechen auf die Therapie vorhersagen können. Letztendlich könnte dies zu einer personalisierten Mikrobiom-basierten Präzisionsmedizin für KK-Patienten führen.

Transfer von CD4-T-Zellen mit modifiziertem TCR zur Optimierung der Krebsimmuntherapie bei erwachsenen und pädiatrischen Patienten

Es handelt sich um ein hochgradig translationales Projekt, das darauf abzielt, die tumoriziden Eigenschaften von CD4+-T-Zellen zu nutzen, um Krebsimmuntherapien zu optimieren. Das Projekt beinhaltet die präklinische Validierung von CD4-T-Zellen mit modifiziertem TCR und den Aufbau einer Phase 1 klinischen Studie für rezidivierende und refraktäre solide Tumoren in Erwachsenen- und Kinderkohorten.